Engineer's
Handbook
 
Reference Tables
 
Rapid
Prototyping
 
Manufacturing
Methods
 
Engineering
Materials
 
Engineering
Software
 
Reference Books
 
Mechanical
Components
 
PLC's
Actuators
Power Transmission
Hydraulics

Mechanical Components - Introduction to Industrial Robots


Robots



Components

A robot generally consists of 5 basic components:

1. Controller

Every robot is connected to a computer controller, which regulates the components of the arm and keeps them working together. The controller also allows the robot to be networked to other systems, so that it may work together with other machines, processes, or robots. Almost all robots are pre-programmed using "teaching" devices or offline software programs. In the future, controllers with artificial intelligence (AI) could allow robots to think on their own, even program themselves. This could make robots more self-reliant and independent.

2. Arm

The arm is the part of the robot that positions the end-effector and sensors to do their pre-programmed business. Many are built to resemble human arms, and have shoulders, elbows, wrists, even fingers. Each joint is said to give the robot 1 degree of freedom. A simple robot arm with 3 degrees of freedom could move in 3 ways: up and down, left and right, forward and backward. Most working robots today have 6 degrees of freedom to allow them to reach any possible point in space within its work envelope. The human arm has 7.

3. Drive

The links (the sections between the joints) are moved into their desired position by the drive. Typically, a drive is powered by pneumatic or hydraulic pressure, or electricity.

4. End-Effector

The end-effector could be thought of as the "hand" on the end of the robotic arm. There are many possible end-effectors including a gripper, a vacuum pump, tweezers, scalpel, blowtorch, welder, spray gun, or just about anything that helps it do its job. Some robots can change end-effectors, and be reprogrammed for a different set of tasks.

5. Sensor

The sensor sends information, in the form of electronic signals back to the controller. Sensors also give the robot controller information about its surroundings and lets it know the exact position of the arm, or the state of the world around it. One of the more exciting areas of sensor development is occurring in the field of computer vision and object recognition. Robot sensors can detect infrared radiation to "see" in the dark.

 

 

 




Copyright © 2004 - 2006 -- EngineersHandbook.com - All Rights Reserved - Disclaimer
Contact Information
Privacy Policy